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Graph Colouring

Can vertices of graph G be coloured with k colours so that no edge is
monochromatic?

One of Karp’s original 21 NP-complete problems [Kar72]

✓: k = 3
✗: k = 2
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Is Colouring Hard?
On one hand, colouring is hard—even to approximate:
• if G is k-colourable, best efficient algorithm uses kn/polylog(n) colours [Hal93]
• if G promised 3-colourable, best efficient algorithm uses n0.199.. colours [KT17]
• NP-hard to approximate within n1−𝜀 factor [FK98; Zuc07]

...but practical algorithms often perform surprisingly well, e.g.
• backtracking search [Kor75; Lew21]
• integer programming [MT96; GM12]
• algebraic algorithms [DLMM08; DLMO09; DLMM11; DMP+15]

Algebraic algorithms captured by algebraic proof systems

Proof complexity lower bounds =⇒ unconditional hardness for these algorithms
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Our Results

For algebraic proof systems, worst-case exponential lower bounds known for
colouring [LN17; AO19]

Colouring easy except in few artificial cases?

To refute this, want average-case hardness, just as for resolution [BCMM05]

Main Result

With probability 1 − o(1), polynomial calculus requires exponential size for
refuting 3-colouring on random graphs
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Polynomial Calculus [CEI96]

To prove set of polynomials 𝒫 = {p1, . . . , pm} has no common root, derive new
polynomials in ideal ⟨𝒫⟩ through

Linear combination:
p q

𝛼p + 𝛽q
𝛼, 𝛽 ∈ F

Multiplication:
p

x · p
x any variable

Refutation of 𝒫 is derivation of 1—sound and complete for Boolean 𝒫

Complexity measures:

• Size: Total # of monomials in proof lines (with multiplicities)
• Degree: Largest degree among monomials in proof lines
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Graph Colouring and Polynomials

Encode k-colouring as polynomials over field F

xv,i = 1 ⇐⇒ “vertex v gets colour i”
k∑

i=1
xv,i − 1, ∀v “every vertex gets a colour”

xv,i · xv,i′ , ∀v, i ≠ i′ “no vertex gets > 1 colour”
xu,i · xv,i, ∀(u, v) ∈ E(G) “no monochromatic edges”

x2
v,i − xv,i, ∀v, i Boolean axioms

Can also deal with other encoding [Bay82] more common in math:
• Add kth root of unity 𝜉 to F
• xv = 𝜉i ⇐⇒ “vertex v gets colour i”
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Formal Statement of Main Result

Theorem

If G is sparse random graph on n vertices, then with probability 1 − o(1)
polynomial calculus requires size exp (Ω(n)) to refute G is 3-colourable.

• Holds over any field
• Holds for both random regular graphs and Erdős–Rényi random graphs

Prove Ω(n) degree lower bound; implies exp(Ω(n)) size lower bound [IPS99]
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Degree Lower Bounds and R-operators

Derivable in degree ≤ D
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Degree Lower Bounds and R-operators

Derivable in degree ≤ D
Overapproximation

Define so-called R-operator [Raz98] on
polynomials such that
• R(p) = 0, for each input polynomial p
• R(p) + R(q) = R(p + q)
• If R(p) = 0 then R(x · p) = 0, for all p

of degree ≤ D − 1
• R(1) = 1

Overapproximation is kernel of R
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R as in Reduction

Put total order ≺ on monomials in F[x], where 1 smallest

Ideal ⟨𝒫⟩ of 𝒫 = {p1, . . . , pm} is set of polynomials q =
∑

i qipi

For ideal ⟨𝒫⟩, define reduction operator R⟨𝒫⟩ : p ↦→ r
• r is polynomial with smallest terms such that r = p − q, where q ∈ ⟨𝒫⟩
• analogous to remainder term after division
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R as in Reduction

Intuition: if set of input polynomials satisfiable, 1 not derivable

Then, R-operator can be reduction modulo input polynomials:
• R(p) = 0 for each input polynomial p
• R(p) + R(q) = R(p + q)
• If R(p) = 0, then R(x · p) = 0 for all p
• R(1) = 1 by above

by definitionFor unsatisfiable input, pseudo-reduction operator R pretends to be above
reduction operator. Low-degree computations cannot tell the difference.
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Proof Ideas

If set 𝒫 of input polynomials satisfiable, get perfect R-operator from reduction
modulo ⟨𝒫⟩

...but 𝒫 unsatisfiable, so 1 ∈ ⟨𝒫⟩

“Almost” works. Still leverage reduction somehow?

Alekhnovich–Razborov [AR03]

• define R using real reduction
• reduce different monomials modulo different satisfiable subsets of 𝒫
• carefully choose subsets so inconsistencies invisible in low degree
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Local” ReductionLocal” ReductionLocal” ReductionLocal”
ReductionLocal” ReductionLocal” Reduction“Local” Reduction

In more detail, idea is:

1 Associate m ∼ S(m) ⊆ V and ideal ⟨S(m)⟩ generated by k-colouring
polynomials on G[S(m)]

2 Define R “locally” on each monomial:

R(p) = R
(∑

i
aimi

)
B

∑
i

aiR⟨S(mi)⟩(mi)
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Our Goal

Want R to look like reduction modulo ideal for low-degree p

Maybe, for well-chosen S and, say, p = m1 + m2, could get

R(m1 + m2) = R⟨S(m1)⟩(m1) + R⟨S(m2)⟩(m2)
!
= R⟨S(m1)∪S(m2)⟩(m1 + m2)

That is, want R⟨S(m)⟩(m) = R⟨U⟩(m) for all U ⊇ S(m) not too large
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Our Goal

What does it mean that R⟨S(m)⟩(m) = R⟨U⟩(m)?

Syntactically: best reduction of m by ⟨U⟩ could be done already in ⟨S(m)⟩
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Our Goal
Semantically: put order on V, can extend every colouring of S(m) to one for U in
order-preserving way

=⇒ “U says no more than S(m)” about colourings of m

Order-preserving: colours in U \ S(m)
either fixed or depend only on single,
smaller vertex in S(m)

Obstructions?
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Constructing S(m)

Three obstructions:

1 dependence on > 1 vertex in S(m)
2 dependence between neighbours of S(m)
3 small neighbours
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Constructing S(m)

Construct S(m) iteratively:

1 start with S(m) = Desc(V(m))
2 while bad structure exists, add it

and descendants to S(m)
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Constructing S(m)

Resulting set has no obstructions!

Can extend colouring on S(m) to all of U:
• fix “good” colouring outside

neighbourhood
• “patch” it on neighbourhood

But not clear at all size of S(m) does not
blow up...
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Key Technical Ingredients
1 Local sparsity: Vertex-induced subgraph of every subset U ⊆ V of size ≤ 𝜀n

has at most (1 + 𝛿)|U| edges

2 Good vertex order:
• always add all descendants, so this

set must be small for every vertex
• if all ordered paths have length c

and max degree is Δ, size is at
most Δc

[RT22]: order by proper colour-
ing of graph =⇒ ordered paths
have length 𝜒(G) = O(1)
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S(m) Is Small

Proof by picture:

• at each step, add ≥ one more
edge than vertices

• short ordered paths =⇒ few
vertices added per step

• quickly becomes dense—
contradicts sparsity
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Open Problems

1 Average-case colouring lower bounds for other proof systems?
• Sherali–Adams
• sum-of-squares
• cutting planes

2 Results field-independent; refine to account for characteristic (cf. [AR03])?

Jonas Conneryd Colouring Is Hard on Average for Polynomial Calculus Oberwolfach 2024 20 / 21



Open Problems

1 Average-case colouring lower bounds for other proof systems?
• Sherali–Adams
• sum-of-squares
• cutting planes

2 Results field-independent; refine to account for characteristic (cf. [AR03])?

Jonas Conneryd Colouring Is Hard on Average for Polynomial Calculus Oberwolfach 2024 20 / 21



Summary

This work:
• Polynomial calculus requires exponential size for colouring on random graphs
• Implies exponential running time for algebraic algorithms successful in practice

Future directions:
• Refine to account for field characteristic?
• Colouring lower bounds for other proof systems?

Thank you!
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