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Abstract—We prove that polynomial calculus (and hence also
Nullstellensatz) over any field requires linear degree to refute
that sparse random regular graphs, as well as sparse Erdős-
Rényi random graphs, are 3-colourable. Using the known relation
between size and degree for polynomial calculus proofs, this
implies strongly exponential lower bounds on proof size.

I. INTRODUCTION

Determining the chromatic number of a graph G, i.e., how

many colours are needed for the vertices of G if no two vertices

connected by an edge should have the same colour, is one of

the classic 21 problems shown NP-complete in the seminal

work of Karp [35]. This graph colouring problem, as it is also

referred to, has been extensively studied since then, but there

are still major gaps in our understanding.

The currently best known approximation algorithm

computes a graph colouring within at most a factor

O
(
n(log log n)2/(log n)3

)
of the chromatic number [31], and

it is known that approximating this number to within a

factor n1−ε is NP-hard [55]. Even under the promise that

the graph is 3-colourable, the most parsimonious algorithm

with guaranteed polynomial running time needs O
(
n0.19996

)
colours [36]. This is very far from the lower bounds that

are known—it is NP-hard to (2k − 1)-colour a k-colourable

graph [10], but the question of whether colouring a 3-colourable

graph with 6 colours is NP-hard remains open [39]. It is widely

believed that any algorithm that colours graphs optimally

has to run in exponential time in the worst case, and the

currently fastest algorithm for 3-colouring has time complexity

O
(
1.3289n

)
[15]. A survey on various algorithms and tech-

niques for so-called exact algorithms for graph colouring can

be found in [33].

Graph colouring instances of practical interest might not

exhibit such exponential-time behaviour, however, and in such

a context it is relevant to study algorithms without worst-case

guarantees and examine how they perform in practice. To

understand such algorithms from a computational complexity

viewpoint, it is natural to investigate bounded models of

computation that are strong enough to describe the reasoning

performed by the algorithms and to prove unconditional lower

bounds that hold in these models.

A. Previous Work

Focusing on random graphs, McDiarmid [46] developed a

method for determining k-colourability that captures a range

of algorithmic approaches. Beame et al. [12] showed that

this method could in turn be simulated by the resolution

proof system [17], [25], [24], [52], and established average-

case exponential lower bounds for resolution proofs of non-k-

colourability for random graph instances sampled so as not to

be k-colourable with exceedingly high probability.

Different algebraic approaches for k-colourability have been

considered in [4], [43], [44], [45]. Bayer [11] seems to have

been the first to use Hilbert’s Nullstellensatz to attack graph

colouring. Informally, the idea is to write the problem as a set of

polynomial equations {pi(x1, . . . , xn) = 0 | i ∈ [m]} in such

a way that legal k-colourings correspond to common roots for

these polynomials. Finding polynomials q1, . . . , qm such that∑m
i=1 qipi = 1 then proves that the graph is not k-colourable.

This latter equality is referred to as a Nullstellensatz certificate
of non-colourability, and the degree of this certificate is the

largest degree of any polynomial qipi in the sum. Later papers

based on Nullstellensatz and Gröbner bases, such as [26], [48],

[32], culminated in an award-winning sequence of works [28],

[30], [29], [27] presenting algorithms with surprisingly good

practical performance.

For quite some time, no strong lower bounds were known for

these algebraic methods or the corresponding proof systems

Nullstellensatz [13] and polynomial calculus [21], [2]. On

the contrary, the authors of [30] reported that essentially

all benchmarks they studied turned out to have Nullstellen-

satz certificates of small constant degree. The degree lower

bound k+1 for k colours in [27] remained the best known until

optimal, linear, degree lower bounds for polynomial calculus

were established in [42] using a reduction from lower bounds

for so-called functional pigeonhole principle formulas [47].

A more general reduction framework was devised in [7] to
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obtain optimal degree lower bounds also for the proof systems

Sherali-Adams [54] and sums-of-squares [40], [49], as well as

weakly exponential size lower bounds for Frege proofs [23],

[51] of bounded depth.

The lower bounds discussed in the previous paragraph are

not quite satisfactory, in that it is not clear how much they

actually tell us about the graph colouring problem, as opposed

to the hardness of the problems being reduced from. In order

to improve our understanding for a wider range of graph

instances, it seems both natural and desirable to establish

average-case lower bounds for random graphs, just as for

resolution in [12]. However, this goal has remained elusive for

almost two decades, as pointed out, e.g., in [47], [42], [41],

[20]. For sparse random graphs, where the number of edges

is linear in the number of vertices, no superconstant degree

lower bounds at all have been established for algebraic or

semialgebraic proof systems. On the contrary, it was shown

in [9], improving on [22], that degree-2 sums-of-squares refutes

k-colourability on random d-regular graphs asymptotically

almost surely whenever d ≥ 4k2. For dense random graphs, the

strongest lower bound seems to be the recent logarithmic degree

bound in the sums-of-squares proof system for Erdős-Rényi

random graphs with edge probability 1/2 and k = n1/2+ε

colours [38]. Since this result is for a problem encoding using

inequalities, however, it is not clear whether this has any

implications for Nullstellensatz or polynomial calculus over

the reals (which are known to be polynomially simulated by

sums-of-squares). And for other fields nothing has been known

for the latter two proof systems—not even logarithmic lower

bounds.

B. Our Contribution

In this work, we establish optimal, linear, degree lower

bounds and exponential size lower bounds for polynomial

calculus proofs of non-colourability of random graphs.

Theorem 1 (informal). For any d ≥ 6, polynomial calculus
(and hence also Nullstellensatz) requires asymptotically almost
surely linear degree to refute that random d-regular graphs
Gn,d, as well as Erdős-Rényi random graphs G

(
n, d/n

)
, are

3-colourable. These degree lower bounds hold over any field,
and also imply exponential lower bounds on proof size.

We prove our lower bound for the standard encoding in

proof complexity, where binary variables xv,i indicate whether

vertex v is coloured with colour i or not. It should be pointed

out that, just as the results in [42], our degree lower bounds

also apply to the k-colourability encoding introduced in [11]

and used in computational algebra papers such as [28], [30],

[29], [27], where a primitive kth root of unity is adjoined to

the field and different colours of a vertex v are encoded by a

variable xv taking different powers of this root of unity.

Our lower bound proofs crucially use a new idea for proving

degree lower bounds for colouring graphs with large girth [53].

After adapting this approach from the root-of-unity encoding

to the Boolean indicator variable encoding, and replacing the

proof in terms of girth with a strengthened argument using

carefully chosen properties of random graphs, we obtain a

remarkably clean and simple solution to the long-standing

open problem of showing average-case polynomial calculus

degree lower bounds for graph colouring. We elaborate on our

techniques in slightly more detail next.

C. Discussion of Proof Techniques

In most works on algebraic and semialgebraic proof systems

such as Nullstellensatz, polynomial calculus, Sherali-Adams,

and sums-of-squares, the focus has been on proving upper and

lower bounds on the degree of proofs. Even when proof size is

the measure of interest, almost all size lower bounds have been

established via degree lower bounds combined with general

results saying that for all of the above proof systems except

Nullstellensatz strong enough lower bounds on degree imply

lower bounds on size [34], [6].

At a high level, the techniques for proving degree lower

bounds for the different proof systems have a fairly similar

flavour. For the static proof systems, i.e., Nullstellensatz,

Sherali-Adams, and sums-of-squares, it is enough to show that

the dual problem is feasible and thus rule out low-degree proofs.

In more detail, for Nullstellensatz, one constructs a design [19],

which is a linear functional mapping low-degree monomials to

elements in the underlying field. This functional should map

low-degree monomials multiplied by any input polynomial pi
to 0, but should map 1 to a non-zero field element. If such

a functional can be found, it is clear that there cannot exist

any low-degree Nullstellensatz certificate
∑m

i=1 qipi = 1 of

unsatisfiability, as the design would map the left-hand side of

the equation to zero but the right-hand side to non-zero. For

Sherali-Adams, the analogous functional furthermore has to

map any low-degree monomials to non-negative numbers, and

for sums-of-squares this should also hold for squares of low-

degree polynomials. Such a pseudo-expectation can be viewed

as a fake probability distribution over satisfying assignments to

the problem, which is indistinguishable from a true distribution

for an adversary using only low-degree polynomials.

Polynomial calculus is different from these proof systems

in that it does not present the certificate of unsatisfiability

as a static object, but instead, given a set of polynomials P ,

dynamically derives new polynomials in the ideal generated

by P . The derivation ends when it reaches the polynomial 1, i.e.,

the multiplicative identity in the field, showing that there is no

solution. To prove degree lower bounds one designs a pseudo-
reduction operator or R-operator [50], which maps all low-

degree polynomials derived from P to 0 but sends 1 to 1, and

which is indistinguishable from a true ideal reduction operator

if one is limited to reasoning with low-degree polynomials. This

means that for bounded-degree polynomial calculus derivations

it seems like the set of input polynomials are consistent.

Following the method in [3], a pseudo-reduction operator R
can be constructed by defining it on low-degree monomials and

extending it to polynomials by linearity. For every monomial m,

we identify a set of related input polynomials S(m), let

〈S(m)〉 be the ideal generated by these polynomials, and define

R(m) = R〈S(m)〉(m) to be the reduction of m modulo the
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ideal 〈S(m)〉. Intuitively, we think of S(m) as the (satisfiable)

subset of polynomials that might possibly have been used in a

low-degree derivation of m, but since the constant monomial 1
is not derivable in low degree it gets an empty associated set

of polynomials, meaning that R(1) = R〈S(1)〉(1) = 1. In order

for R to look like a real reduction operator, we need to show

that for polynomials p and p′ of not too high degree it holds

that R(p+ p′) = R(p) +R(p′) and R(p ·R(p′)) = R(p · p′).
The first equality is immediate, since R is defined to be a linear

operator, but the second equality is more problematic. Since the

polynomials p and p′ will be reduced modulo different ideals—

in fact, this will be the case even for different monomials

within the same polynomial—a priori there is no reason why

R should interact nicely with multiplication.

Proving that an R-operator behaves like an actual reduction

operator for low-degree polynomials is typically the most

challenging technical step in the lower bound proof. Very

roughly, the proof method in [3] goes as follows. Suppose

that m and m′ are monomials with associated polynomial

sets S(m) and S(m′), respectively. Using expansion prop-

erties of the constraint-variable incidence graph for the in-

put polynomials, we argue that the true reduction opera-

tor will not change if we reduce both monomials modulo

the larger ideal 〈S(m) ∪ S(m′)〉 generated by the union of

their associated sets of polynomials. This implies that we

have R(m′) = R〈S(m′)〉(m′) = R〈S(m)∪S(m′)〉(m′) and

R(m ·m′) = R〈S(m)∪S(m′)〉(m ·m′), from which it follows

that R(m ·R(m′)) = R(m ·m′) holds, just like for reduction

modulo an actual ideal. To prove that expanding the ideals

does not change the reduction operator is a delicate balancing

act, though, since the ideals will need to be large enough to

guarantee non-trivial reduction, but at the same time small

enough so that different ideals can be “patched together” with

only local adjustments.

All previous attempts to apply this lower bound strategy to

the graph colouring problem have failed. For other polynomial

calculus lower bounds it has been possible to limit the

interaction between different polynomials in the input. For

graph colouring, however, applying the reduction operator

intuitively corresponds to partial colourings of subsets of

vertices, and it has not been known how to avoid that locally

assigned colours propagate new colouring constraints through

the rest of the graph. In technical language, what is needed

is a way to order the vertices in the graph so that there will

be no long ordered paths of vertices along which colouring

constraints can spread. It has seemed far from obvious how

to construct such an ordering, or even whether it should exist,

and due to this technical problem it has not been possible to

join local ideal reduction operators into a globally consistent

R-operator.

This technical problem was addressed in a recent paper [53]

by an ingenious, and in hindsight surprisingly simple, idea. The

main insight is to consider a proper colouring of the graph G
with χ(G) colours, and then order the vertices in each colour

class consecutively. In this way, order-decreasing paths are

of length at most χ(G), and one can guarantee some form

of locality. Once this order is in place, the final challenge is

to ensure that small cycles do not interfere when “patching

together” reductions. In [53], such conflicts are avoided by

ensuring that the graph should have high girth, which results

in a degree lower bound linear in the girth of the graph. In

terms of graph size, this cannot give better than logarithmic

lower bounds, however, since the girth is at most logarithmic

in the number of vertices for any graph with chromatic number

larger than 3 [18].

In our work, we employ the same ordering as in [53], but

instead of girth use the fact that random graphs are locally very

sparse. Once the necessary technical concepts are in place, the

proof becomes quite clean and elegant, which we view as an

additional strength of our result.

D. Outline of This Paper

The rest of this paper is organized as follows. In Section II

we present some preliminaries. In Section III we introduce our

techniques and provide a proof overview. In Section IV we

prove the main result of the paper. For simplicity of exposition,

in this conference version we only present our results for

4-colourability on random regular graphs. For a full statement

of our results with complete proofs, we refer the reader to the

upcoming full-length version of this paper. We conclude with

some final remarks and open problems in Section V.

II. PRELIMINARIES

Let us start by briefly reviewing the necessary preliminaries

from proof complexity, graph theory, and algebra. We use

standard asymptotic notation, and all logarithms in this paper

have base 2. Given a natural number n, we let [n] denote the

set {1, 2, . . . , n} and, for a natural number i and a set S, let(
S
i

)
denote the family of subsets of S of size i.

For a field F we let F[x1, . . . , xn] denote the polynomial

ring over F in n variables. A monomial is a product of variables

and a term is a monomial multiplied by an element of F.

A. Proof Complexity

Polynomial calculus (PC) [21] is a proof system that uses

algebraic reasoning to deduce that a system P of polynomials

over a field F involving the variables x1, . . . , xn is infeasible,

i.e., that the polynomials in P have no common root. Polyno-

mial calculus interprets P as a set of generators of an ideal and

derives new polynomials in this ideal through two derivation

rules:

Linear combination:
p q

ap+ bq
, a, b ∈ F (1a)

Multiplication:
p

xip
, xi any variable. (1b)

A polynomial calculus derivation π of a polynomial p starting

from the set P is a sequence of polynomials (p1, . . . , pτ ),
where pτ = p and each polynomial pi either is in P or is

obtained by applying one of the derivation rules (1a)-(1b) to

polynomials pj with j < i. A polynomial calculus refutation
of P is a derivation of the constant polynomial 1 from P .

We are interested in systems of polynomial equations over
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Boolean variables and therefore include the Boolean axioms

{x2
1−x1, . . . , x

2
n−xn} in P . It is well-known that polynomial

calculus is sound and complete when the Boolean axioms are

present.

The most common complexity measures of polynomial calcu-

lus refutations are size and degree. The size of a polynomial p is

its number of monomials when expanded into a linear combina-

tion of distinct monomials, and the degree of p is the maximum

degree among all its monomials. The size of a polynomial

calculus refutation π is the sum of the sizes of the polynomials

in π, and the degree of π is the maximum degree among all

polynomials in π. We follow the convention of not counting

applications of the Boolean axioms toward degree or size

by tacitly working over F[x1, . . . , xn]/〈x2
1 − x1, . . . , x

2
n − xn〉,

which only strengthens a lower bound on either measure.

Polynomial calculus size and degree are connected through

the size-degree relation [34]: if P consists of polynomials

with constant degree and D is the minimal degree among all

polynomial calculus refutations of P , then every refutation of

P must have size exp
(
Ω
(
D2/n

))
.

The size-degree relation also applies to the stronger proof

system polynomial calculus resolution (PCR) [2], which

is polynomial calculus where additionally each variable xi

appearing in P has a formal negation xi, enforced by adding

polynomials xi+xi−1 to P . Polynomial calculus and PCR are

equivalent with respect to degree, since the map xi �→ 1− xi

sends any PCR proof to a valid polynomial calculus proof of

the same degree. Therefore, to prove a lower bound on PCR

size it suffices to prove a lower bound on polynomial calculus

degree, and in particular all size lower bounds in this paper

also apply to PCR. Finally, we remark that lower bounds on

polynomial calculus degree or size also apply to the weaker

Nullstellensatz proof system mentioned in Section I-A and

Section I-B.

B. Graph Colouring and Polynomial Calculus

Given a graph G, we study the polynomial calculus degree

required to refute the system Col(G, k) of polynomials

k∑
i=1

xv,i − 1, v ∈ V (G) (2a)

xv,ixv,i′ , v ∈ V (G), i 	= i′ (2b)

xu,ixv,i, (u, v) ∈ E(G), i ∈ [k] (2c)

x2
v,i − xv,i, v ∈ V (G), i ∈ [k] (2d)

whose common roots correspond precisely to proper

k-colourings of G. We refer to axioms in (2a) and (2b) as

vertex axioms and to (2c) as edge axioms. It is known [42,

Proposition 2.2] that a polynomial calculus degree lower

bound for Col(G, k) also applies to Bayer’s formulation [11]

of k-colourability, where each colour corresponds to a kth root

of unity. This encoding has received considerable attention in

computational algebra [28], [30], [29], [27], [53].

Our proof of Theorem 1 is based on the following lemma

due to Razborov [50].

Lemma 2 ([50]). Let P be a set of multilinear polynomials over
F[x1, . . . , xn] and let D be a positive integer. Suppose there
exists an F-linear operator R over multilinear polynomials
with the following properties:

1) R(1) = 1.
2) R(p) = 0 for every polynomial p in P .
3) For every term t of degree at most D − 1 and every

variable xi it holds that R(xit) = R(xiR(t)).

Then any polynomial calculus refutation of P over F requires
degree strictly greater than D.

The proof of Lemma 2 is straightforward: apply R to all

polynomials in a purported polynomial calculus refutation

of P and conclude by induction that it is impossible to reach

contradiction in degree at most D. We call a linear operator

satisfying properties 1-3 as stated in Lemma 2 an R-operator
with respect to F. Because the operators we consider in this

paper satisfy these properties over any field, we will refer to

them simply as R-operators going forward.

C. Algebra Background

The definition of our R-operator requires some standard

notions from algebra, phrased for our setting in, e.g., [47]. A

total ordering ≺ on the multilinear monomials in F[x1, . . . , xn]
is admissible if the following properties hold:

1) If Deg(m1) < Deg(m2), then m1 ≺ m2.

2) For any monomials m1,m2 and m such that m1 ≺ m2

and m shares no variables with m1 or m2, it holds

that mm1 ≺ mm2.

We identify the ordering of a term with the ordering of the

corresponding monomial and the leading term (respectively,

leading monomial) of a polynomial p is the largest term

(respectively, monomial) in p according to ≺. For an ideal I
over F[x1, . . . , xn]/〈x2

1−x1, . . . , x
2
n−xn〉, a term t is reducible

modulo I if t is the leading term of a polynomial q ∈ I;

otherwise t is irreducible modulo I . Under a total monomial

ordering it is well-known that for any ideal I and any

polynomial p there exists a unique representation p = q + r
such that q ∈ I and r is a linear combination of irreducible

terms modulo I . We call r the reduction of p modulo I , and

denote by RI the reduction operator which maps polynomials p
to the reduction of p modulo I .

We rely on the following observation whose proof can be

found in [47].

Observation 3. If I1 and I2 are ideals and I1 ⊆ I2,
then for every variable xi and every term t it holds
that RI2(xiRI1(t)) = RI2(xit).

Let us record one final observation. We prove this fact in

the full version of this article.

Observation 4. If g and {q1, . . . , qm} = Q are polynomials
in F[x1, . . . , xn]/〈x2

1 − x1, . . . , x
2
n − xn〉, and g vanishes on

all the Boolean common roots of the polynomials in Q, then it
holds that g ∈ 〈Q〉.
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D. Graph Theory

We only consider graphs G = (V,E) that are fi-

nite, undirected and contain no self-loops or multi-edges.

Given a subset U ⊆ V , the neighbourhood of U in

G is N(U) = {v ∈ V \ U | ∃u ∈ U : (u, v) ∈ E} and, for a

set W ⊆ V , we let the neighbourhood of U in W be denoted

by NW (U) = N(U) ∩W . The set of edges between vertices

in U is denoted by E(U), while the set of edges with one

endpoint in U and the other in W \U is denoted by E(U,W ).
We let G[U ] denote the subgraph induced by U in G, that is,

G[U ] = (U,E(U)), and a graph is said to be d-regular if all

vertices are of degree d. Note that a graph on n vertices can

be d-regular only if d < n and dn is even.

A simple path of length τ is a tuple of distinct ver-

tices (v1, . . . , vτ+1) satisfying (vi, vi+1) ∈ E for all i ∈ [τ ]
and a simple cycle of length τ is a simple path of length τ
with the additional requirement that v1 = vτ+1. A simple path

or simple cycle (v1, . . . , vτ+1) of length τ ≥ 2 is a τ -hop with
respect to U if the endpoints v1 and vτ+1 are both contained

in U and all other vertices are not contained in U . For a

subgraph H ⊆ G, we refer to a τ -hop with respect to V (H)
as a τ -hop with respect to H . For a set S ⊆ N

+, we say that

a τ -hop is an S-hop if τ ∈ S.

A graph is said to be k-colourable if there is a map-

ping χ : V → [k] satisfying χ(u) 	= χ(v) for all edges

(u, v) ∈ E and we refer to χ as a k-colouring of G. Finally

we have the chromatic number of G, denoted by χ(G), which

is the smallest integer k such that G is k-colourable.

The graph G is (�, ε)-sparse if every subset U ⊆ V of size

at most � satisfies |E(U)| ≤ (1 + ε)|U | and we say that G
is an (�, γ)-expander if all subsets U ⊆ V of size at most �
satisfy |E(U, V )| ≥ γ|U |. If G is d-regular, then it is not hard

to see that sparsity is equivalent to expansion: a d-regular graph

is (�, ε)-sparse if and only if it is an (�, d−2(1+ ε))-expander.

We frequently use that large subsets of (�, ε)-sparse graphs

are 3-colourable.

Lemma 5. If G = (V,E) is (�, ε)-sparse for some ε < 1/2,
then it holds for every subset U ⊆ V of size at most � that G[U ]
is 3-colourable.

Proof. By induction on |U |. The base case |U | = 1 is

immediate. For the inductive step we may assume that the

claim holds for sets of size at most s−1. Consider a set U ⊆ V
of size s ≤ �. The average degree of a vertex in G[U ]
is 2|E(U)|/s, which is at most 2(1+ε) < 3 by the assumption

on sparsity. Hence, since graph degrees are integers, there

exists a vertex v ∈ U with degree at most 2 in G[U ]. The

graph G[U \ {v}] is 3-colourable by the inductive hypothesis,

and every 3-colouring witnessing this will leave at least one

colour available to properly colour v. Hence every 3-colouring

of G[U \ {v}] can be extended to G[U ], which concludes the

proof.

We consider two models of random graphs: the Erdős-Rényi
random graph model G(n, p) which is the distribution over

graphs on n vertices where each edge is independently included

with probability p; and the random d-regular graph model Gn,d

which is the uniform distribution over the set of d-regular

graphs on n vertices. A graph property P holds asymptotically
almost surely for a random graph model G = {Gn}∞n=1 if

limn→∞ PrG∼Gn
[G has property P ] = 1.

Random graphs are (�, ε)-sparse with excellent parameters,

as stated in the following lemma. We provide a proof of this

folklore result in the upcoming full version of this paper.

Lemma 6 (Sparsity lemma). There is a constant δ > 0 such
that for integers n, d ≥ 3 and all ε > δd2/ log n satisfying
ε = ω(1/ log n), the following holds. If G is a graph sampled
from Gn,d or G(n, d/n), then asymptotically almost surely it
is (d−30(1+ε)/εn, ε)-sparse.

Let us stress that ε may be any (small) function on n and in

our applications indeed will depend on the degree d. Finally,

we need some bounds on the chromatic number of graphs

sampled from G(n, d/n) or Gn,d. The upper bound is used

for estimates and the lower bound ensures that Col(G, k) is

unsatisfiable for large enough d.

Lemma 7 ([37], [1]). For a graph G sampled from either
G(n, d/n) or Gn,d the following holds asymptotically almost
surely. The chromatic number χ(G) is at most 2d/ log d and,
if d ≥ 10, then χ(G) ≥ 5.

III. TECHNIQUES AND PROOF OVERVIEW

In this section we introduce the technical tools needed for

our lower bounds and provide a proof overview.

A. Closure and Ordering by Colouring

Let G = (V,E) be a graph with a linear ordering ≺ on V .

An increasing (respectively, decreasing) path in G is a simple

path (v1, . . . , vτ ) where vi ≺ vi+1 (respectively, vi+1 ≺ vi)
for all i ∈ [τ − 1]. For vertices u, v in V we say that u is a

descendant of v if there exists a decreasing path from v to u,

and for a set of vertices U ⊆ V we let DU be the set of all

the vertices which are a descendant of some vertex in U . We

denote by Desc(U) the descendant graph of U which is the

subgraph induced by U ∪DU , that is, Desc(U) = G[U ∪DU ].
Recall that a τ -hop with respect to a set U ⊆ V is a simple

path or a simple cycle of length τ with the property that the two

endpoints are both contained in U while all other vertices are

not in U . The absence of τ -hops with respect to U makes the

neighbourhood of U highly structured: if there are no 2-hops

with respect to U , then every vertex in N(U) has a single

neighbour in U , and if there are no 3-hops with respect to U ,

then the neighbourhood of U is an independent set. The absence

of longer τ -hops imply similar, more technical properties for

sets of vertices that have a short path to U . Jumping ahead a

bit, our lower bounds rely on the absence of {2, 3}-hops for

4-colourability and {2, 3, 4}-hops as well as some additional

small shapes for 3-colourability (see the full version).

We now define a process that constructs, given a set U ⊆ V ,

a set of vertices that contains U , has no {2, 3}-hops and, as

we shall see, is not much larger than U as long as U itself is

small.
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Definition 8 (Closure [53]). Let G = (V,E) be a graph with

a linear ordering on V and let U ⊆ V . Set H0 = Desc(U).
While there exists a {2, 3}-hop Qi with respect to Hi−1

set Hi = Desc(V (Hi−1) ∪ V (Qi)); otherwise, stop and set

Hend = Hi−1. The closure of U , denoted by Cl(U), is the set

of vertices V (Hend).

We collect some properties of the closure in the next lemma.

Lemma 9. For any graph G = (V,E) with a linear ordering
on V and any set U ⊆ V the following hold.

1) Cl(U) is uniquely defined.
2) U is a subset of Cl(U).
3) The closure is monotone: for every set U ′ ⊇ U , it holds

that Cl(U ′) ⊇ Cl(U).
4) The closure is idempotent, that is, Cl(Cl(U)) = Cl(U).

Proof. Items 2 and 4 follow immediately from the defini-

tion. We prove items 1 and 3 simultaneously by induction.

Let (H0, . . . , Hend) and (H ′
0, . . . , H

′
end) be two sequences of

the construction of the closure in Definition 8, where H0

is Desc(U) and H ′
0 is either Desc(U) for item 1 or Desc(U ′)

for item 3. We intend to show that V (Hend) ⊆ V (H ′
end), from

where item 3 follows immediately while item 1 follows by

symmetry. The proof is by induction on i. The base case i = 0
is immediate for both items since V (H0) ⊆ V (H ′

0) and

V (H ′
0) ⊆ V (H ′

end) by construction. For the induction step,

we may assume that V (Hi−1) ⊆ V (H ′
end). If no 2-hop or

3-hop with respect to V (Hi−1) exists, there is nothing to

prove. Hence, let Qi be the hop added to Hi−1 in the ith
iteration. If Qi is a {2, 3}-hop with respect to Hi−1, then

either Qi is contained in H ′
end or, if not, some subgraph of

Qi is a hop with respect to H ′
end. But the latter cannot be, as

it contradicts that V (H ′
end) = Cl(U ′). It follows by induction

that V (Hend) ⊆ V (H ′
end).

Recall that, for a graph G = (V,E), the formula Col(G, k)
is defined over the set of variables {xv,i}v∈V,i∈[k]. In order

to define our R-operator we require an admissible ordering

of monomials over the above mentioned variables. We induce

this ordering by a linear ordering ≺ on V as follows: first, we

order the variables in an arbitrary but fixed manner such that

for any colours i, j ∈ [k] it holds that xu,i ≺ xv,j whenever

u ≺ v. With this order fixed we then obtain the admissible

ordering on monomials by first ordering the monomials by

degree and then lexicographically according to the ordering on

the variables.

Next we define the linear ordering on V from which we then

obtain the induced admissible monomial ordering as explained

in the above paragraph.

Definition 10 (χ-ordering [53]). Let G = (V,E) be a

graph and let χ : V → [c] be a proper c-colouring of G.

A linear ordering ≺ on V is a χ-ordering on V if u ≺ v
whenever χ(u) < χ(v).

We conclude this section with two simple observations that

are frequently used throughout the remainder of the paper.

Observation 11. If G = (V,E) is a graph that is χ-ordered
by a proper colouring χ : V → [c], then every decreasing or
increasing path in G has length at most c− 1. If, moreover, G
has maximum degree d, then for every subset U of V it holds
that |V (Desc(U))| ≤ 2dc−1|U |.
B. Proof Overview

The construction of our R-operator follows the general

paradigm introduced by Aleknovich and Razborov [3], which,

disregarding reductions, is used in essentially all subsequent

polynomial calculus degree lower bounds. First, for every

monomial m we identify a subset S(m) of axioms in Col(G, k)
that are in some sense relevant to m. Then, we define R
on the monomial m as the reduction modulo 〈S(m)〉 and

extend R linearly to arbitrary polynomials. The goal is to

satisfy properties 1-3 in Lemma 2, which typically requires

two technical lemmas. The first is the size lemma, which states

that S(m) is not much larger than the degree of m. The second

is the reduction lemma, which states that for every ideal I that

is generated by a set of polynomials that contains S(m) and

is furthermore not too large (in particular, I should be small

enough to not contain 1), it holds that RI(m) = R〈S(m)〉(m).
Once these lemmas are in place, the lower bound follows by

standard arguments.

In a recent preprint [53], Romero and Tunçel use the notions

of closure and χ-ordering to define the set S(m) for each

monomial m. Their proofs of the size lemma and reduction

lemma assume that the underlying graph has large girth and

hence is locally a tree. We use their notion of closure for

our lower bound for 4-colourability on random regular graphs

(Theorem 12), but the size lemma and reduction lemma cannot

be proved in the same way since random graphs asymptotically

almost surely contain short cycles. Instead of girth, we rely on

the notion of sparsity from Section II-D. For the improvement

to 3-colourability on random regular graphs and on Erdős-

Rényi random graphs, we need new notions of closures and,

in the proof of the reduction lemma, a more refined argument

based on graph contraction. We defer these improvements to

the full version of this paper.

IV. A LOWER BOUND FOR 4-COLOURABILITY ON RANDOM

REGULAR GRAPHS

In this section we prove a linear degree polynomial calculus

refutation lower bound for refuting the claim that there exists

a 4-colouring of a constant degree random regular graph.

Theorem 12. There is a constant δ > 0 such that the following
holds for all integers n and d satisfying δd3/ log d < log n.
If G is a graph sampled from Gn,d and k ≥ 4 is an
integer, then asymptotically almost surely every polynomial
calculus refutation of Col(G, k), over any field, requires degree
2−O(d)n.

When d is constant, Theorem 12 implies polynomial calculus

resolution size lower bounds for Col(G, k) of the form

exp(Ω(n)) through the size-degree relation mentioned in

Section II-A.
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Fix a graph G = (V,E) and write F[x] to denote

F[xv,i | v ∈ V, i ∈ [k]] modulo the Boolean axioms. As out-

lined, we first use the closure to associate each monomial m
in F[x] with a subset S(m) of Col(G, k). Let c be the chromatic

number of G and let χ be a c-colouring of G. Fix a χ-ordering

on V and an admissible ordering on F[x] induced by χ. Given a

polynomial p we let V (p) denote the set of vertices mentioned

by the variables in p.

Definition 13 (Term closure). The closure of a term t, denoted

by Cl(t), is the vertex set Cl(V (t)).

The “relevant” axiom set S(m) associated with a mono-

mial m is the set of k-colourability axioms defined over

G[Cl(m)], that is, the axioms in Col(G[Cl(m)], k). For brevity,

given a subset U of V we denote the ideal 〈Col(G[U ], k)〉
by 〈U〉 and refer to the polynomials in Col(G[U ], k) as the

generators of 〈U〉.
We let our R-operator on a monomial m be defined by

R(m) = R〈Cl(m)〉(m), where the reduction is done with respect

to the admissible ordering induced by the χ-ordering, and

extend R linearly to arbitrary multilinear polynomials in F[x].
To verify items 1-3 in Lemma 2 we need to establish two

properties of the closure of a monomial m. First, we show

that the size of the closure is closely related to the degree of

the monomial m. We show that this property indeed holds

if m is of low degree, G is locally sparse, and the closure

is taken with respect to any admissible ordering induced by

a χ-ordering on V .

Lemma 14 (Size lemma). If G = (V,E) has maximum
degree d, chromatic number c and is (�, 1/4c)-sparse, then,
for every set U ⊆ V of size D ≤ �/20c, it holds that
|Cl(U)| ≤ 40dc−1D.

Proof. Recall from Definition 8 that the closure of a set U ⊆ V
is defined to be the vertex set of the final element of a sequence

(H0, H1, . . . , Hend), where H0 = Desc(U) and Hi is obtained

from Hi−1 by appending a {2, 3}-hop with respect to Hi−1

and then taking the descendant graph of the set of vertices of

the resulting graph. The key observation of the proof is that

adding a {2, 3}-hop to Hi adds more edges than vertices, thus

increasing the edge density. As the graph G is locally sparse

we may conclude that the sequence (H0, H1, . . . , Hend) needs

to be rather short which allows us to argue the size upper

bound on the closure of U .

In a bit more detail, for each Hi we identify a vertex set Ui

such that the edge density of the graph G[Ui] increases with i.
Since the sets Ui grow very slowly and thus the local sparsity

always applies, we may conclude that the number of iterations

is bounded. Finally, as the graphs Hi are the descendant graphs

of the sets Ui, it holds that Hend is the descendant graph of a

set which is not much larger than the initial set U , whereby

the theorem follows from the descendant graph size bound in

Observation 11.

We inductively define Ui as follows. Let U0 = U and let Qi

be the hop added to Hi−1 at iteration i ≥ 1. If we denote by

u and v the endpoints of Qi (possibly, u = v) and let Pu and

Hi−1 = Desc(Ui−1) Hi = Desc(Ui)

Ui−1

u

v

Qi

Pv

Ui

Fig. 1: Construction of Ui.

Pv be two shortest decreasing paths from Ui−1 to u and v,

respectively, then Ui = Ui−1 ∪ V (Pu ∪ Pv ∪Qi).

For this definition to be meaningful, we need to establish

that the paths Pu and Pv always exist.

Claim 15. For every vertex v in Hi, there exists a decreasing

path in Hi from some vertex in Ui to v.

Proof. The proof is by induction on i. The base case i = 0
holds because H0 = Desc(U0). For the induction step, suppose

that the claim holds for i − 1. By definition, the vertices

in Hi \Hi−1 are descendants of a vertex in Qi, and all vertices

in Qi are contained in Ui.

Next, we show that |Ui| grows slowly with i and that the edge

density |E(Ui)|/|Ui| exceeds the sparsity threshold (1+ 1/4c)
after a small number of iterations. We are deliberately loose

with constants below in order for the same estimates to hold

in a more general setting that we consider in the full version

of this paper.

Claim 16. It holds that |Ui \ Ui−1| ≤ 2c+ |V (Qi)| − 4 and

|E(Ui)| ≥ |E(Ui−1)|+ |Ui \ Ui−1|+ 1.

Proof. Denote the graph Pu ∪ Pv ∪ Qi by F . By Obser-

vation 11, Pu and Pv contain at most c vertices each,

so 3 ≤ |V (F )| ≤ 2c+ |V (Qi)| − 2. Moreover, the endpoints

of F are contained in Ui−1 and all other vertices in F are

outside of Ui−1. By our choice of Pu and Pv there are two

cases, depending on whether F contains a cycle or not.

Case 1: If there is no cycle in F , then |V (F ) ∩ Ui−1| = 2
so |Ui \ Ui−1| = |V (F )| − 2. Moreover |E(F )| ≥ |V (F )| − 1
since F is connected.

Case 2: If F contains a cycle, then |V (F ) ∩ Ui−1| = 1,

hence |Ui \Ui−1| = |V (F )|−1. In addition, |E(F )| ≥ |V (F )|
since F is connected and contains a cycle. Moreover, it holds

that |V (F )| ≤ 2c+ |V (Qi)| − 3.

In both cases, we have that |Ui \ Ui−1| ≤ 2c+ |V (Qi)| − 4
and |E(Ui)| ≥ |E(Ui−1)|+ |Ui \ Ui−1|+ 1.
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Towards contradiction, suppose that i ≥ 4D + 1. Note

that |V (Qi)| ≤ 4, so by Claim 16 we have

|E(U4D+1)|
|U4D+1| =

|E(U)|+∑4D+1
i=1 |E(Ui) \ E(Ui−1)|

|U |+∑4D+1
i=1 |Ui \ Ui−1|

(3a)

≥ |E(U)|+∑4D+1
i=1 (|Ui \ Ui−1|+ 1)

|U |+∑4D+1
i=1 |Ui \ Ui−1|

(3b)

≥ 0 +
∑4D+1

i=1 (2c+ 1)

D +
∑4D+1

i=1 2c
(3c)

> 1 +
1

4c
, (3d)

which contradicts that G is (�, 1/4c)-sparse since

|U4D+1| < 15cD < �. Therefore, it follows that i ≤ 4D.

At iteration i in the construction, Hi is the descendant

graph of U ∪⋃
j≤i V (Qj), and the hop Qi added to V (Hi−1)

contains at most 2 vertices not already in Hi. Therefore,

since i ≤ 4D in the last iteration, a rather loose upper bound

on |U ∪⋃
j≤i V (Qj)| is 20D. With this estimate, it follows

from Observation 11 that |Cl(U)| ≤ 40dc−1D.

We now prove the reduction lemma, which states that there

is no difference between reducing a monomial m modulo

〈Cl(m)〉 and reducing modulo some slightly larger ideal that

contains 〈Cl(m)〉.
Lemma 17 (Reduction lemma). If G = (V,E) is (�, ε)-sparse
for some ε < 1/2, then, for every monomial m and every subset
U ⊆ V of size at most � satisfying U ⊇ Cl(m), it holds that m
is reducible modulo 〈U〉 if and only if m is reducible modulo
〈Cl(m)〉.

The proof idea is to construct a function ρ mapping

variables associated with vertices in U \ Cl(m) to either

constants or polynomials of smaller order such that all axioms

in 〈U〉 \ 〈Cl(m)〉 are either satisfied or mapped to a polynomial

in 〈Cl(m)〉. It is not hard to see that such a mapping turns any

polynomial in 〈U〉 with leading monomial m into a smaller

polynomial in 〈Cl(m)〉 whose leading monomial is also m. It

then follows that a monomial m is reducible modulo 〈U〉 if m
is reducible modulo 〈Cl(m)〉. The other direction is immediate,

so this suffices to prove the lemma.

We now outline the construction of ρ. Variables far

from Cl(m), which here means variables associated with a

vertex in U \ (Cl(U) ∪NU (Cl(m))), are mapped according to

a 3-colouring χ of the subgraph G[U \ Cl(m)]. It remains to

define ρ on variables associated with vertices in NU (Cl(m)).
By our choice of closure, NU (Cl(m)) forms an independent

set, and furthermore each vertex u in NU (Cl(m)) has precisely

one adjacent vertex v in Cl(m). Hence, as k ≥ 4 and χ is

a 3-colouring of G[U \ Cl(m)], no matter how this vertex v
is coloured there is always a colour cu available to properly

4-colour u. We may think of cu as a function that, given χ and

the colour of v, outputs a (proper) 4-colouring of u. Variables

associated with such a vertex u are mapped according to cu
by ρ.

To implement the above proof outline we need some further

notation: for a polynomial p and a partial function ρ mapping

variables to polynomials we let p�ρ denote the polynomial

obtained from p by substituting every occurrence of a variable

xi in the domain of ρ by ρ(xi).

Proof of Lemma 17. Since Cl(m) is a subset of U , it follows

that if m is reducible modulo 〈Cl(m)〉, then m is also reducible

modulo 〈U〉. For the reverse direction, define a mapping ρ as

follows. Since G is (�, ε)-sparse for ε < 1/2, and since |U | ≤ �,
it follows from Lemma 5 that there exists a 3-colouring χ of the

subgraph G[U \ Cl(m)]. Variables associated with a vertex u
in U \ (Cl(m) ∪NU (Cl(m))

)
are then mapped accordingly:

ρ(xu,i) = 1 if χ(u) = i and ρ(xu,i) = 0 otherwise.

Next, for each vertex u ∈ NU (Cl(m)) we define ρ on

the variables associated to u. Since χ is a 3-colouring of

G[U \Cl(m)], the neighbourhood of u is coloured by at most

2 colours. As k ≥ 4 there are two distinct colours c1, c2 ∈ [k]
not appearing in the neighbourhood of u. Furthermore, since

there are no 2-hops in U with respect to Cl(m), the vertex u
has a single neighbour v ∈ Cl(m). Define ρ on u by

xu,c1 �→ xv,c2 ; (4a)

xu,c2 �→
∑

i∈[k],i �=c2

xv,i; (4b)

xu,i �→ 0 , for all i 	= c1, c2. (4c)

This completes the definition of ρ.

Let f be a polynomial in 〈U〉 with leading monomial m.

We claim that f�ρ ∈ 〈Cl(m)〉, that all monomials m′

satisfy m′�ρ � m′, and that m = m�ρ. If so, we are

done, since then m is the leading monomial of the polyno-

mial f�ρ ∈ 〈Cl(m)〉 and we may hence conclude that if m
is reducible modulo 〈U〉, then m is also reducible modulo

〈Cl(m)〉.
We now argue that the three properties hold. The latter two

are almost immediate: since ρ does not map variables associated

with Cl(m) (of which V (m) is a subset) we have m = m�ρ.

Furthermore, since V
(
Desc(Cl(m))

)
= Cl(m) it holds for

every variable x that x�ρ � x, and hence every monomial m′

satisfies m′�ρ � m′.
It remains to prove that f�ρ ∈ 〈Cl(m)〉. Since there are no

3-hops in U with respect to Cl(m), the vertices in NU (Cl(m))
form an independent set. Therefore, the mapping ρ extends

any proper k-colouring of Cl(m) to a proper k-colouring of

U , which in turn implies that every axiom p of Col(G[U ], k)
satisfies p�ρ ∈ 〈Cl(m)〉 by Observation 4. Since f ∈ 〈U〉
we may write f =

∑
i aipi for polynomials ai in F[x] and

axioms pi of Col(G[U ], k). As we noted, it holds for each

of the axioms pi that pi�ρ ∈ 〈Cl(m)〉 and therefore the

polynomial f�ρ =
∑

i ai�ρ · pi�ρ is in 〈Cl(m)〉 as claimed.

Proof of Theorem 12. Let c be the chromatic number of G
and let χ : V → [c] be a colouring of G. Fix a χ-ordering

on V and an admissible ordering on F[x] induced by χ. We

assume that c ≤ 2d/ log d and that G is (�, 1/4c)-sparse

for � = 2−300dn; both properties hold asymptotically almost
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surely by Lemma 7 and Lemma 6, respectively. For the latter

we use the bound δd3/ log d ≤ log n to argue that the second

parameter 1/4c is large enough.

Fix D = 2−300dn/(40dc−1) > 2−350dn = 2−O(d)n. Recall

that R(m) = R〈Cl(m)〉(m). The goal is to show that R satisfies

items 1-3 in Lemma 2 for this choice of D, that is, we need

to show that R(1) = 1, that R maps all axioms of Col(G, k)
to 0 and that for every term t of degree at most D − 1 and

every variable x, it holds that R(xt) = R(xR(t)).
Note that R(1) = 1 is immediate since the closure

of a constant polynomial is empty by definition. To see

that R maps each axiom in Col(G, k) to 0, let p be one

such axiom and let mp be the product of the variables

in p. As mp mentions at most two vertices, it follows by

Lemma 14 that |Cl(mp)| ≤ 80dc−1 < �. Therefore, for each

axiom p =
∑

j tj it holds that

R(p) =
∑
j

R(tj) (5a)

=
∑
j

R〈Cl(tj)〉(tj) [by definition] (5b)

=
∑
j

R〈Cl(mp)〉(tj) [by Lemmas 9 and 17] (5c)

= R〈Cl(mp)〉
(∑

j

tj

)
[by the linearity of R] (5d)

= R〈Cl(mp)〉(p) [by definition] (5e)

= 0 , (5f)

where the last equality holds because p is an element of

〈Cl(mp)〉 (in fact, one of its generators).

Finally, we need to show that for every term t of

degree at most D − 1 and every variable x, it holds

that R(xt) = R(xR(t)). By definition we have that

R(xR(t)) =
∑

t′∈R(t)

R(xt′) =
∑

t′∈R(t)

R〈Cl(xt′)〉(xt′) , (6)

where the sum is over terms t′ in the polynomial R(t). The

next step is the main technical challenge. We want to show

that if t is a term of degree at most D − 1, then reducing

modulo 〈Cl(xt′)〉 or 〈Cl(xt)〉 results in the same polynomial.

More formally, we claim that
∑

t′∈R(t)

R〈Cl(xt′)〉(xt′) =
∑

t′∈R(t)

R〈Cl(xt)〉(xt′) . (7)

Before proving (7) let us finish the proof of Theorem 12. By

noting that

R(xR(t))

=
∑

t′∈R(t)

R〈Cl(xt)〉(xt′) [by (6) and (7)] (8a)

= R〈Cl(xt)〉
( ∑

t′∈R(t)

xt′
)

[by the linearity of R] (8b)

= R〈Cl(xt)〉(xR〈Cl(t)〉(t)) [by the definition of t′] (8c)

= R〈Cl(xt)〉(xt) [by Observation 3] (8d)

= R(xt) (8e)

we establish the final property of Lemma 2 which concludes

the proof of Theorem 12 modulo (7).

Let us now show that (7) holds. The choice of D and

Lemma 14 together imply that |Cl(xt)| ≤ 40dc−1D = �,
so if we can show that Cl(xt′) ⊆ Cl(xt) for each term t′

in R(t), we can apply Lemma 17, from which the claim

follows immediately.

We first argue that V (R(t)) ⊆ Cl(t). Suppose this is

not the case. Then in particular R(t) 	= 0. Assign all

variables that mention a vertex outside of Cl(t) to 0, and

denote this assignment by ρ. Then, the terms in R(t)�ρ
are still irreducible modulo 〈Cl(t)〉. By definition, R(t) is

the unique sum of irreducible terms modulo 〈Cl(t)〉 such

that t = q+R(t) for some polynomial q in 〈Cl(t)〉. No variable

in t nor in any of the generators of 〈Cl(t)〉 is assigned by ρ,

so t�ρ = t and q�ρ ∈ 〈Cl(t)〉. Furthermore, by our assumption

that V (R(t)) 	⊆ Cl(t), it must hold that R(t)�ρ 	= R(t). But

this contradicts the fact that the decomposition t = q +R(t)
is unique, and thus it follows that V (R(t)) ⊆ Cl(t).

Note that clearly V (x) ⊆ Cl(xt), and since the closure is

monotone, it holds that Cl(t) ⊆ Cl(xt). Hence, for any term t′

in R(t) we have V (x) ∪ V (t′) ⊆ Cl(xt). Again by monotonic-

ity, it holds that Cl(xt′) = Cl(V (x) ∪ V (t′)) ⊆ Cl(Cl(xt)).
Finally, since the closure is idempotent, it follows

that Cl(Cl(xt)) = Cl(xt). Therefore, Lemma 17 im-

plies that R〈Cl(xt′)〉(xt′) = R〈Cl(xt)〉(xt′), which estab-

lishes (7).

We conclude this section with a technical remark about

our result. Our degree lower bound is of the form n/f(d),
where f is at least exponential in d. This stands in contrast

with previous results [12], [42] where f is at most polynomial

in d. While the precise dependence on d is immaterial for

sparse random graphs, it would be interesting to see if this can

be improved. It is not immediately clear, however, what the

correct dependence on d should be. For the sums-of-squares

proof system, which simulates polynomial calculus over the

reals [16], there exist strong upper bounds for k-colourability on

random graphs and random regular graphs in some parameter

regimes: the paper [9] showed that asymptotically almost surely,

degree 2 sums-of-squares refutes k-colourability on d-regular

random graphs if d ≥ 4k2. These results rule out a polynomial

dependence on d in any linear sums-of-squares degree lower

bound for k-colouring whenever k is fixed. However, similar

upper bounds are not known to hold for polynomial calculus.

V. CONCLUDING REMARKS

In this work, we show that polynomial calculus over any field

requires linear degree to refute that a sparse random regular

graph or Erdős-Rényi random graph is 3-colourable. Our lower

bound is optimal up to constant factors, and implies strongly

exponential size lower bounds for the same problem by the

well-known size-degree relation for polynomial calculus [34].

It would be interesting to investigate whether the ideas and

concepts underlying this work could be extended to prove lower
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bounds for colouring principles in other proof systems, the most

obvious candidates being Sherali-Adams and sums-of-squares.

Regarding polynomial calculus, it is worth noting that the the

closure operation defined in [53] and generalized in this work

is not, per se, restricted to graph colouring. It is natural to ask

whether similar techniques could be useful for proving degree

lower bounds for other graph problems. One open problem is

to improve the degree lower bound for matching on random

graphs in [8] to linear in the graph size, and to make it hold for

graphs of small constant degree. Another problem is to establish

polynomial calculus size lower bounds for independent set and

vertex cover, analogously to what was done for the resolution

proof system in [14]. Finally, an intriguing technical challenge

is to prove degree lower bounds for variants of the dense linear

ordering principle [5] for graphs of bounded degree.
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